Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38095228

RESUMO

Insects are the most diverse animal group on the planet. Their success is reflected by the diversity of habitats in which they live. However, these habitats have undergone great changes in recent decades; understanding how these changes affect insect health and fitness is an important challenge for insect conservation. In this Review, we focus on the research that links the nutritional environment with infection and immune status in insects. We first discuss the research from the field of nutritional immunology, and we then investigate how factors such as intracellular and extracellular symbionts, sociality and transgenerational effects may interact with the connection between nutrition and immunity. We show that the interactions between nutrition and resistance can be highly specific to insect species and/or infection type - this is almost certainly due to the diversity of insect social interactions and life cycles, and the varied environments in which insects live. Hence, these connections cannot be easily generalised across insects. We finally suggest that other environmental aspects - such as the use of agrochemicals and climatic factors - might also influence the interaction between nutrition and resistance, and highlight how research on these is essential.


Assuntos
Insetos , Estado Nutricional , Animais
2.
J Evol Biol ; 36(12): 1731-1744, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955420

RESUMO

There is growing empirical evidence that animal hosts actively control the density of their mutualistic symbionts according to their requirements. Such active regulation can be facilitated by compartmentalization of symbionts within host tissues, which confers a high degree of control of the symbiosis to the host. Here, we build a general theoretical framework to predict the underlying ecological drivers and evolutionary consequences of host-controlled endosymbiont density regulation for a mutually obligate association between a host and a compartmentalized, vertically transmitted symbiont. Building on the assumption that the costs and benefits of hosting a symbiont population increase with symbiont density, we use state-dependent dynamic programming to determine an optimal strategy for the host, i.e., that which maximizes host fitness, when regulating the density of symbionts. Simulations of active host-controlled regulation governed by the optimal strategy predict that the density of the symbiont should converge to a constant level during host development, and following perturbation. However, a similar trend also emerges from alternative strategies of symbiont regulation. The strategy which maximizes host fitness also promotes symbiont fitness compared to alternative strategies, suggesting that active host-controlled regulation of symbiont density could be adaptive for the symbiont as well as the host. Adaptation of the framework allowed the dynamics of symbiont density to be predicted for other host-symbiont ecologies, such as for non-essential symbionts, demonstrating the versatility of this modelling approach.


Assuntos
Evolução Biológica , Simbiose , Animais , Simbiose/fisiologia , Modelos Teóricos
3.
J Exp Biol ; 225(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35904096

RESUMO

Nutrition is a central factor influencing immunity and resistance to infection, but the extent to which nutrition during development affects adult responses to infections is poorly understood. Our study investigated how the nutritional composition of the larval diet affects the survival, pathogen load and food intake of adult fruit flies, Bactrocera tryoni, after septic bacterial infection. We found a sex-specific effect of larval diet composition on survival post-infection: survival rate was higher and bacterial load was lower for infected females raised on a sugar-rich larval diet than for females raised on a protein-rich larval diet, an effect that was absent in males. Both males and females were heavier when fed a balanced larval diet compared with a protein- or sugar-rich diet, while body lipid reserves were higher for those that had consumed the sugar-rich larval diet compared with other diets. Body protein reserves were lower for flies that had been raised on the sugar-rich larval diet compared with other diets in males, but not females. Both females and males shifted their nutrient intake to ingest a sugar-rich diet when infected compared with sham-infected flies without any effect of the larval diet, suggesting that sugar-rich diets can be beneficial to fight off bacterial infection as shown in previous literature. Overall, our findings show that nutrition during early life can shape individual fitness in adulthood.


Assuntos
Tephritidae , Animais , Dieta , Ingestão de Alimentos , Feminino , Larva/fisiologia , Masculino , Açúcares , Tephritidae/fisiologia
4.
Am Nat ; 199(5): E170-E185, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472016

RESUMO

AbstractHabitat quality early in life determines individual fitness, with possible long-term evolutionary effects on groups and populations. In holometabolous insects, larval ecology plays a major role in determining the expression of traits in adulthood, but how ecological conditions during the larval stage interact to shape adult life history and fitness, particularly in nonmodel organisms, remains subject to scrutiny. Consequently, our knowledge of the interactive effects of ecological factors on insect development is limited. Here, using the polyphagous fly Bactrocera tryoni, we conducted a fully factorial design where we manipulated larval density and larval diet (protein rich, standard, and sugar rich) to gain insights into how these ecological factors interact to modulate adult fitness. As expected, a protein-rich diet resulted in faster larval development and heavier and leaner adults that were more fecund compared with the standard and sugar-rich diets, irrespective of larval density. Females from the protein-rich larval diet had overall higher reproductive rate (i.e., eggs per day) than females from other diets, and reproductive rate decreased linearly with density for females from the protein-rich diet but nonlinearly for females from the standard and sugar-rich diets over time. Surprisingly, adult lipid reserve increased with larval density for adults from the sugar-rich diet (as opposed to decreasing as in other diets), possibly because of a stress response to an extremely adverse condition during development (i.e., high intraspecific competition and poor nutrition). Together, our results provide insights into how ecological factors early in life interact and shape the fate of individuals through life stages in holometabolous insects.


Assuntos
Características de História de Vida , Tephritidae , Animais , Dieta , Feminino , Insetos , Larva , Açúcares
5.
Proc Biol Sci ; 288(1963): 20211993, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34814751

RESUMO

Many insects rely on intracellular bacterial symbionts to supplement their specialized diets with micronutrients. Using data from diverse and well-studied insect systems, we propose three lines of evidence suggesting that hosts have tight control over the density of their obligate, intracellular bacterial partners. First, empirical studies have demonstrated that the within-host symbiont density varies depending on the nutritional and developmental requirements of the host. Second, symbiont genomes are highly reduced and have limited capacity for self-replication or transcriptional regulation. Third, several mechanisms exist for hosts to tolerate, regulate and remove symbionts including physical compartmentalization and autophagy. We then consider whether such regulation is adaptive, by discussing the relationship between symbiont density and host fitness. We discuss current limitations of empirical studies for exploring fitness effects in host-symbiont relationships, and emphasize the potential for using mathematical models to formalize evolutionary hypotheses and to generate testable predictions for future work.


Assuntos
Afídeos , Simbiose , Animais , Afídeos/fisiologia , Evolução Biológica , Insetos
6.
J Insect Physiol ; 134: 104308, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34474015

RESUMO

The microbiota influences hosts' health and fitness. However, the extent to which the microbiota affects host' foraging decisions and related life history traits remains to be fully understood. Our study explored the effects of microbiota manipulation on foraging preference and phenotypic traits of larval and adult stages of the polyphagous fruit fly Bactrocera tryoni, one of the main horticultural pests in Australia. We generated three treatments: control (non-treated microbiota), axenic (removed microbiota), and reinoculation (individuals which had their microbiota removed then re-introduced). Our results confirmed that axenic larvae and immature (i.e., newly emerged 0 day-old, sexually-immature) adults were lighter than control and reinoculated individuals. Interestingly, we found a sex-specific effect of the microbiota manipulation on carbohydrate intake and body composition of 10 day-old mature adults. Axenic males ate less carbohydrate, and had lower body weight and total body fat relative to control and reinoculated males. Conversely, axenic females ate more carbohydrate than control and reinoculated ones, although body weight and lipid reserves were similar across treatments. Axenic females produced fewer eggs than control and reinoculated females. Our findings corroborate the far-reaching effects of microbiota in insects found in previous studies and show, for the first time, a sex-specific effect of microbiota on feeding behaviour in flies. Our results underscore the dynamic relationship between the microbiota and the host with the reinoculation of microbes restoring some traits that were affected in axenic individuals.


Assuntos
Composição Corporal , Comportamento Alimentar/fisiologia , Fatores Sexuais , Tephritidae , Animais , Metabolismo dos Carboidratos , Dípteros/microbiologia , Dípteros/fisiologia , Feminino , Fertilidade , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Larva/microbiologia , Larva/fisiologia , Masculino , Tephritidae/microbiologia , Tephritidae/fisiologia
7.
Microorganisms ; 8(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846933

RESUMO

The commensal microbiota is a key modulator of animal fitness, but little is known about the extent to which the parental microbiota influences fitness-related traits of future generations. We addressed this gap by manipulating the parental microbiota of a polyphagous fruit fly (Bactrocera tryoni) and measuring offspring developmental traits, body composition, and fecundity. We generated three parental microbiota treatments where parents had a microbiota that was non-manipulated (control), removed (axenic), or removed-and-reintroduced (reinoculation). We found that the percentage of egg hatching, of pupal production, and body weight of larvae and adult females were lower in offspring of axenic parents compared to that of non-axenic parents. The percentage of partially emerged adults was higher, and fecundity of adult females was lower in offspring of axenic parents relative to offspring of control and reinoculated parents. There was no significant effect of parental microbiota manipulation on offspring developmental time or lipid reserve. Our results reveal transgenerational effects of the parental commensal microbiota on different aspects of offspring life-history traits, thereby providing a better understanding of the long-lasting effects of host-microbe interactions.

8.
Curr Biol ; 30(13): 2459-2467.e3, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502417

RESUMO

Recent research has suggested that the outcome of host-parasite interactions is dependent on the diet of the host, but most previous studies have focused on "top-down" mechanisms, i.e., how the host's diet improves the host immune response to drive down the parasite population and improve host fitness. In contrast, the direct impacts of host nutrition on parasite fitness and the mechanisms underpinning these effects are relatively unexplored. Here, using a model host-pathogen system (Spodoptera littoralis caterpillars and Xenorhabdus nematophila, an extracellular bacterial blood parasite), we explore the effects of host dietary macronutrient balance on pathogen growth rates both in vivo and in vitro, allowing us to compare pathogen growth rates both in the presence and absence of the host immune response. In vivo, high dietary protein resulted in lower rates of bacterial establishment, slower bacterial growth, higher host survival, and slower speed of host death; in contrast, the energy content and amount of carbohydrate in the diet explained little variation in any measure of pathogen or host fitness. In vitro, we show that these effects are largely driven by the impact of host dietary protein on host hemolymph (blood) osmolality (i.e., its concentration of solutes), with bacterial growth being slower in protein-rich, high-osmolality hemolymphs, highlighting a novel "bottom-up" mechanism by which host diet can impact both pathogen and host fitness.


Assuntos
Interações Hospedeiro-Parasita , Spodoptera/parasitologia , Xenorhabdus/fisiologia , Animais , Dieta , Larva/química , Larva/crescimento & desenvolvimento , Larva/parasitologia , Concentração Osmolar , Spodoptera/química , Spodoptera/crescimento & desenvolvimento
9.
J Insect Physiol ; 125: 104058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32422147

RESUMO

Tephritid fruit flies are commonly reared on artificial larval diets for laboratory studies and for sterile insect technique pest management programs. While significant effort has been invested in developing artificial larval diets, surprisingly little is known about the specific nutritional requirements of tephritid flies. Recently developed gel larval diets have provided new opportunities for nutritional studies in Queensland fruit fly, Bactrocera tryoni ('Q-fly'). Wheat germ oil (WGO) is the main source of fatty acids and vitamin E in this diet, and is key for production of high-quality adults. To identify the importance of nutritional components of WGO for Q-fly productivity and quality, linoleic, linolenic, oleic and palmitic fatty acids as well as α-tocopherol (vitamin E) were included in the diet individually and in combination. Diets that included all of the tested fatty acids or just unsaturated fatty acids performed as well as diets containing WGO in most quality control parameters except fecundity, and addition of vitamin E reduced the pupal productivity. Considering individual fatty acids, larval diets containing only linolenic acid produced adults with higher percentage of fliers than did larval diets containing only palmitic acid or oleic acid. Compared with diets containing WGO, nutritional requirements for egg production in Q-fly were not entirely met by either grouped fatty acids or individual polyunsaturated, monounsaturated or saturated fatty acids, however, diets containing linoleic acid alone produced more eggs than any other fatty acid. The present study is a significant advance in understanding of the role of fatty acids as a component of WGO in larval diet in meeting the needs of developing Q-fly for somatic performance, but highlight also that other, untested, components of WGO appear to be important for reproduction.


Assuntos
Ração Animal/análise , Ácidos Graxos/administração & dosagem , Tephritidae/crescimento & desenvolvimento , Vitamina E/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Óleos de Plantas/análise , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Tephritidae/efeitos dos fármacos , Vitaminas/administração & dosagem
10.
J Insect Physiol ; 120: 103969, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678599

RESUMO

Nutrition is a major mediator of insect life-history trait expression. While the role of macronutrient (carbohydrate and protein) balance on trait expression has received substantial attention, the implications of different classes of specific macronutrients remains virtually unexplored. Here, we addressed this gap by varying the type of carbohydrate in larval diets of the polyphagous fruit fly Bactrocera tryoni (aka 'Queensland fruit fly'). Sourcing insects from a colony maintained using larval diets that contain sucrose, we assessed the effects of sucrose, maltose, and lactose on larval development and adult traits. Replacement of sucrose with lactose resulted in slow larval growth, as well as decreases in pupation, adult emergence and adult body weight for both sexes, although adult lipid reserves were unaffected. Sucrose and maltose were equivalent in terms of larval growth, pupation, adult emergence and adult weight of both sexes. Surprisingly, adults from larvae reared on diets containing maltose had lower lipid reserves than adults from larvae reared on diets containing either lactose or sucrose. The sex ratio of adults at emergence from larvae reared on diets containing lactose and maltose was balanced, but was female-biased in adults from larvae reared on diets containing sucrose. Our results show that carbohydrate sources are not equivalent for development of the Queensland fruit fly, affecting both larval development and adult traits. These findings have implications for understanding the ecology of this highly polyphagous species which infests fruits with highly diverse carbohydrate contents, as well as for the rearing and management of this pest species.


Assuntos
Lactose/metabolismo , Maltose/metabolismo , Sacarose/metabolismo , Tephritidae/crescimento & desenvolvimento , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Feminino , Lactose/administração & dosagem , Larva/crescimento & desenvolvimento , Masculino , Maltose/administração & dosagem , Sacarose/administração & dosagem
11.
J Anim Ecol ; 89(2): 460-470, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31658371

RESUMO

Immunity and nutrition are two essential modulators of individual fitness. However, while the implications of immune function and nutrition on an individual's lifespan and reproduction are well established, the interplay between feeding behaviour, infection and immune function remains poorly understood. Asking how ecological and physiological factors affect immune responses and resistance to infections is a central theme of eco-immunology. In this study, we used the fruit fly, Drosophila melanogaster, to investigate how infection through septic injury modulates nutritional intake and how macronutrient balance affects survival to infection by the pathogenic Gram-positive bacterium Micrococcus luteus. Our results show that infected flies maintain carbohydrate intake, but reduce protein intake, thereby shifting from a protein-to-carbohydrate (P:C) ratio of ~1:4 to ~1:10 relative to non-infected and sham-infected flies. Strikingly, the proportion of flies dying after M. luteus infection was significantly lower when flies were fed a low-P high-C diet, revealing that flies shift their macronutrient intake as means of nutritional self-medication against bacterial infection. These results are likely due to the effects of the macronutrient balance on the regulation of the constitutive expression of innate immune genes, as a low-P high-C diet was linked to an upregulation in the expression of key antimicrobial peptides. Together, our results reveal the intricate relationship between macronutrient intake and resistance to infection and integrate the molecular cross-talk between metabolic and immune pathways into the framework of nutritional immunology.


Assuntos
Drosophila , Infecções , Animais , Dieta/veterinária , Drosophila melanogaster , Imunidade Inata , Nutrientes
12.
BMC Microbiol ; 19(Suppl 1): 286, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870299

RESUMO

BACKROUND: Commensal microbes can promote survival and growth of developing insects, and have important fitness implications in adulthood. Insect larvae can acquire commensal microbes through two main routes: by vertical acquisition from maternal deposition of microbes on the eggshells and by horizontal acquisition from the environment where the larvae develop. To date, however, little is known about how microbes acquired through these different routes interact to shape insect development. In the present study, we investigated how vertically and horizontally acquired microbiota influence larval foraging behaviour, development time to pupation and pupal production in the Queensland fruit fly ('Qfly'), Bactrocera tryoni. RESULTS: Both vertically and horizontally acquired microbiota were required to maximise pupal production in Qfly. Moreover, larvae exposed to both vertically and horizontally acquired microbiota pupated sooner than those exposed to no microbiota, or only to horizontally acquired microbiota. Larval foraging behaviour was also influenced by both vertically and horizontally acquired microbiota. Larvae from treatments exposed to neither vertically nor horizontally acquired microbiota spent more time overall on foraging patches than did larvae of other treatments, and most notably had greater preference for diets with extreme protein or sugar compositions. CONCLUSION: The integrity of the microbiota early in life is important for larval foraging behaviour, development time to pupation, and pupal production in Qflies. These findings highlight the complexity of microbial relations in this species, and provide insights to the importance of exposure to microbial communities during laboratory- or mass-rearing of tephritid fruit flies.


Assuntos
Bactérias/classificação , Comportamento Consumatório/fisiologia , Tephritidae/fisiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Feminino , Microbioma Gastrointestinal , Larva/crescimento & desenvolvimento , Larva/microbiologia , Filogenia , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Simbiose , Tephritidae/microbiologia
13.
Ecol Evol ; 9(11): 6342-6352, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236225

RESUMO

In holometabolous insects, adult fitness depends on the quantity and quality of resource acquired at the larval stage. Diverse ecological factors can influence larval resource acquisition, but little is known about how these factors in the larval environment interact to modulate larval development and adult traits.Here, we addressed this gap by considering how key ecological factors of larval density, diet nutritional composition, and microbial growth interact to modulate pupal and adult traits in a polyphagous tephritid fruit fly, Bactrocera tryoni (aka "Queensland fruit fly").Larvae were allowed to develop at two larval densities (low and high), on diets that were protein-rich, standard, or sugar-rich and prepared with or without preservatives to inhibit or encourage microbial growth, respectively.Percentage of adult emergence and adult sex ratio were not affected by the interaction between diet composition, larval density, and preservative treatments, although low preservative content increased adult emergence in sugar-rich diets but decreased adult emergence in protein-rich and standard diets.Pupal weight, male and female adult dry weight, and female (but not male) body energetic reserves were affected by a strong three-way interaction between diet composition, larval density, and preservative treatment, whereby in general, low preservative content increased pupal weight and female lipid storage in sugar-rich diets particularly at low-larval density and differentially modulated the decrease in adult body weight caused by larval density across diets.Our findings provide insights into the ecological factors modulating larval development of a polyphagous fly species and shed light into the ecological complexity of the larval developmental environment in frugivorous insects.

14.
R Soc Open Sci ; 6(4): 190090, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183148

RESUMO

In holometabolous insects, larval nutrition is a key factor underpinning development and fitness. Heterogeneity in the nutritional environment and larval competition can force larvae to forage in suboptimal diets, with potential downstream fitness effects. Little is known about how larvae respond to competitive heterogeneous environments, and whether variation in these responses affects current and next generations. Here, we designed nutritionally heterogeneous foraging arenas by modifying nutrient concentration, where groups of the polyphagous fruit fly Bactrocera tryoni could forage freely at various levels of larval competition. Larval foraging preferences were highly consistent and independent of larval competition, with greatest foraging propensity for high (100%) followed by intermediate (80% and 60%) nutrient concentration diets, and avoidance of lower concentration diets (less than 60%). We then used these larval preferences (i.e. 100%, 80% and 60% diets) in fitness assays in which larvae competition was maintained constant, and showed that nutrient concentrations selected by the larvae in the foraging trials had no effect on fitness-related traits such as egg hatching and pupation success, adult flight ability, sex ratio, percentage of emergence, nor on adult cold tolerance, fecundity and next-generation pupal weight. These results support the idea that polyphagous species can exploit diverse hosts and nutritional conditions with minimal fitness costs to thrive in new environments.

15.
J Econ Entomol ; 112(5): 2278-2286, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31139832

RESUMO

Sterile insect technique (SIT) for Queensland fruit fly, Bactrocera tryoni Froggatt, Australia's most economically damaging fruit fly species, is currently undergoing a major renewal and expansion. SIT relies on efficient and economical mass-rearing procedures that produce high-quality flies. Two solid larval diets, carrot and lucerne chaff, have traditionally been used to rear Queensland fruit fly. Recently, a gel larval diet has been developed to eliminate biological bulking agents from the mass-rearing process, but to date, there has been no direct comparison of gel larval diet with traditional solid diets. In the present study, the performance of flies reared on gel larval diet was compared with the performance of flies reared on carrot and lucerne chaff diets. In addition, to investigate whether the performance of reared flies depends on ancestral diet as well as tested diet, we sourced eggs from a colony maintained on carrot diet and from a colony maintained on a lucerne chaff diet. Overall, the gel diet was as good or better than the solid diets in all quality control parameters, including, egg-larval duration, pupal number, pupal recovery, adult emergence, percentage of fliers, and rate of fliers. Of note, larvae developed faster and pupated more synchronously on the gel diet than on either of the solid diets. At the loading densities used, gel and carrot diets produced less waste than lucerne chaff diet. Gel diets offer a rearing solution for Queensland fruit fly that eliminates biological bulking agents and yields faster and more synchronous larval development without compromising productivity or quality.


Assuntos
Daucus carota , Tephritidae , Animais , Austrália , Dieta , Larva , Medicago sativa
16.
Insect Biochem Mol Biol ; 110: 98-104, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31082476

RESUMO

Nutrition and infection are closely linked. While it is now well established that hosts can modulate their nutrition after being infected, the extent to which this change in foraging provides the host with a greater fitness remains to be fully understood. Our study explored the relationships between dietary choice, macronutrients intake [i.e., protein (P) and carbohydrate (C)], infection, survival rate and growth of pathogenic bacterial population in the true fruit fly Bactrocera tryoni. Results showed that flies injected with the bacterium Serratia marcescens decreased their macronutrient intake and shifted their diet choice to carbohydrate-biased diet compared to naïve individuals. Interestingly, flies injected with either PBS (i.e., sham-infected) or heat-killed bacteria also reduced food intake and modulated diet choice but only for a day after injection. When infected flies were restricted to the diet they selected (i.e., PC 1:8), they survived better the infection than those restricted to a protein-biased diet (i.e., PC 1:5). In addition, we did not observe any growth of pathogen load in infected flies fed PC 1:8 for the first 3 days post-infection. Finally, a decrease in lipid body reserves was found in flies injected with live bacteria and, interestingly, this loss of body lipid also occurred in flies injected with heat-killed bacteria, but in a diet-dependent manner. Our results indicated that B. tryoni flies modulated their macronutrient intake and decreased the negative effects of the infection on their survival ("nutritional self-medication") the first days following the infection.


Assuntos
Imunidade Inata/efeitos dos fármacos , Nutrientes/fisiologia , Serratia marcescens/fisiologia , Tephritidae/fisiologia , Ração Animal/análise , Animais , Dieta , Ingestão de Alimentos , Comportamento Alimentar , Feminino , Tephritidae/efeitos dos fármacos , Tephritidae/microbiologia
17.
Pest Manag Sci ; 75(12): 3184-3192, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30950173

RESUMO

BACKGROUND: Cool storage is a valuable means of manipulating insect development time. The Queensland fruit fly (Q-fly) is Australia's most economically significant pest of fruit crops. The present study investigates cool storage of Q-fly pupae for increasing production flexibility for sterile insect technique programs. Development time, survival and fly quality were assessed following continuous storage of 1-day-old pupae at temperatures ranging from 13 to 25 °C. RESULTS: Survival was reduced almost to zero by pupal storage at 13 and 15 °C, was greatly reduced by storage at 17 °C, and was modestly reduced by storage at 19 °C. Pupal development time was extended by 16 days at 17 °C and by 9 days at 19 °C. Cool storage negatively affected flight ability and depleted lipid reserves. Cool storage at 19 °C enhanced the ability of 3-day-old adults to recover from chill-coma compared to control flies, indicating cold acclimation. CONCLUSION: There is potential for use of cool storage in Q-fly mass rearing, especially to improve alignment between production and field releases. For the purpose of delaying the development time of Q-fly pupae with minimal quality reduction, storage at 23 °C is recommended for 1-day-old pupae. © 2019 Society of Chemical Industry.


Assuntos
Temperatura Baixa , Controle Biológico de Vetores/métodos , Tephritidae/crescimento & desenvolvimento , Animais , Pupa/crescimento & desenvolvimento
18.
Insect Biochem Mol Biol ; 109: 128-141, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954680

RESUMO

Nutrition is vital to health and the availability of resources has long been acknowledged as a key factor in the ability to fight off parasites, as investing in the immune system is costly. Resources have typically been considered as something of a "black box", with the quantity of available food being used as a proxy for resource limitation. However, food is a complex mixture of macro- and micronutrients, the precise balance of which determines an animal's fitness. Here we use a state-space modelling approach, the Geometric Framework for Nutrition (GFN), to assess for the first time, how the balance and amount of nutrients affects an animal's ability to mount an immune response to a pathogenic infection. Spodoptera littoralis caterpillars were assigned to one of 20 diets that varied in the ratio of macronutrients (protein and carbohydrate) and their calorie content to cover a large region of nutrient space. Caterpillars were then handled or injected with either live or dead Xenorhabdus nematophila bacterial cells. The expression of nine genes (5 immune, 4 non-immune) was measured 20 h post immune challenge. For two of the immune genes (PPO and Lysozyme) we also measured the relevant functional immune response in the hemolymph. Gene expression and functional immune responses were then mapped against nutritional intake. The expression of all immune genes was up-regulated by injection with dead bacteria, but only those in the IMD pathway (Moricin and Relish) were substantially up-regulated by both dead and live bacterial challenge. Functional immune responses increased with the protein content of the diet but the expression of immune genes was much less predictable. Our results indicate that diet does play an important role in the ability of an animal to mount an adequate immune response, with the availability of protein being the most important predictor of the functional (physiological) immune response. Importantly, however, immune gene expression responds quite differently to functional immunity and we would caution against using gene expression as a proxy for immune investment, as it is unlikely to be reliable indicator of the immune response, except under specific dietary conditions.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Spodoptera/genética , Spodoptera/imunologia , Animais , Dieta , Hemolinfa , Interações Hospedeiro-Patógeno , Larva/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Spodoptera/crescimento & desenvolvimento , Xenorhabdus/fisiologia
19.
Front Zool ; 16: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820236

RESUMO

BACKGROUND: The fitness of holometabolous insects depends largely on resources acquired at the larval stage. Larval density is an important factor modulating larval resource-acquisition, influencing adult survival, reproduction, and population maintenance. To date, however, our understanding of how larval crowding affects adult physiology and behaviour is limited, and little is known about how larval crowding affects adult non-reproductive ecological traits. Here, larval density in the rearing environment of the polyphagous fruit fly Bactrocera tryoni ('Queensland fruit-fly') was manipulated to generate crowded and uncrowded larval treatments. The effects of larval crowding on pupal weight, adult emergence, adult body weight, energetic reserves, fecundity, feeding patterns, flight ability, as well as adult predation risk were investigated. RESULTS: Adults from the crowded larval treatment had lower adult emergence, body weight, energetic reserves, flight ability and fecundity compared to adults from the uncrowded larval treatment. Adults from the crowded larval treatment had greater total food consumption (i.e., consumption of yeast plus sucrose) relative to body weight for both sexes compared to adults from the uncrowded treatment. Furthermore, males from the crowded treatment consumed more yeast relative to their body weight than males from the uncrowded treatment, while females from the crowded treatment consumed more sucrose relative to their body weight than females from the uncrowded treatment. Importantly, an interaction between the relative consumptions of sucrose and yeast and sex revealed that the density of conspecifics in the developmental environment differentially affects feeding of adult males and females. We found no effect of larval treatment on adult predation probability. However, males were significantly more likely to be captured by ants than females. CONCLUSION: We show that larvae crowding can have important implications to ecological traits in a polyphagous fly, including traits such as adult energetic reserve, flight ability, and adult sex-specific nutrient intake. Our findings contextualise the effects of larval developmental conditions into a broad ecological framework, hence providing a better understanding of their significance to adult behaviour and fitness. Furthermore, the knowledge presented here can help us better understanding downstream density-dependent effects of mass rearing conditions of this species, with potential relevance to Sterile Insect Technique.

20.
Pest Manag Sci ; 75(4): 1056-1064, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30242947

RESUMO

BACKGROUND: The Queensland fruit fly (Q-fly) is Australia's most economically damaging insect pest of fruit crops. The Sterile Insect Technique (SIT) used to suppress outbreaks relies on supply of high-quality flies and this can be assisted by the ability to manipulate production schedules. Cool storage at temperatures that are sufficient to slow development without causing significant somatic damage can provide a valuable means of manipulating production schedules. In this study, we investigate the effect of four storage temperatures (10, 13, 16 and 19 °C) and three exposure times (3, 6 or 9 days) on Q-fly eggs. RESULTS: Egg storage proved effective in prolonging the developmental time of Q-flies. Storage at 10 °C was unsuitable, resulting in a low hatching rate for all exposure times. Hatching rate was also significantly reduced when eggs were exposed to 13 °C for 6 or 9 days, followed by a significant reduction in the number of pupae recovered. Storage at 16 °C yielded promising results, prolonging the preimaginal development of Q-flies up to 6.5 days without significantly affecting egg hatching or subsequent development. CONCLUSION: Cool storage of eggs shows promise as a tool for prolonging the development of Q-flies to manipulate schedules in mass rearing programs. © 2018 Society of Chemical Industry.


Assuntos
Temperatura Baixa , Controle de Insetos/métodos , Controle Biológico de Vetores/métodos , Tephritidae/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...